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Abstract 
 
Various reliability methods have been suggested in the literature, but the bound of an estimated reliability has received less attention. 

The maximum entropy principle is used to obtain the reliability bound with respect to the first moment truncated for the first time. Com-
pared to the previous methods of probability bounding based on given moments, our method is demonstrated to generate a tight upper 
bound that is practically useful for engineering applications. Numerical examples have shown that a good upper bound of probability of 
failure is well obtained up to four given moments, but with more moments a divergence problem can occur. 
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1. Introduction 

The main task of a reliability analysis is to translate the ef-
fect of uncertainties on the component or system performance 
to a corresponding probability as a measure how much some 
given design requirements are satisfied in the probabilistic 
point of view. Several reliability methods are available to cal-
culate the probability of failure effectively such as FORM [1] 
(first order reliability method), SORM [2] (second order reli-
ability method), MCS [3] (Monte Carlo simulation), and mo-
ment methods [4-10]. The bound of a probability of failure has 
less attention in the literature even though the accuracy or 
efficiency of the reliability methods has been the main issue. 
Among those few in the literature, two important cases of 
FORM and MCS are reviewed and the results of sample ex-
amples are summarized in the Appendix. The inequality [11] 
to bound the probability of failure of FORM has been intro-
duced. However, the curvature information of the limit state 
function has to be available and the bound is often not narrow 
enough to have practical value. The illustrative example 
shows this point. The bounds of failure probability of MCS 
are usually indicated as the confidence intervals in terms of 
the number of sample size. The sample results are compared 
with the FORM in the Appendix. 

To explore the possibility of getting a sharper bound, our in-
terest is focused on the probability distribution bounding tech-
nique with limited moment information. Under an arbitrary 
number of moment constraints, any probability distributions 
can be mathematically bounded by employing the theorem of 
Akhiezer [12]. Based on Akhiezer’s theorem, Racz et al. [13] 
have suggested a moment-based distribution bounding method. 
Once a reference probability distribution is constructed, it 
provides the probability bounds at any points. Similarly, the 
reliability bounds are also easily calculated without excessive 
computational cost. However, the bounds of the existing 
methods are mostly too loose to be useful for engineering 
applications. Since it covers all kinds of PDFs including the 
discrete PDFs, the loose bound is the natural trade-off. Dis-
crete PDFs are rare in structural applications. Tighter bounds 
would be obtained by limiting our attention to only continuous 
PDFs. 

MEP [14, 15] (maximum entropy principle) is one of the 
moment methods and a versatile tool allowing an arbitrary 
number of moments. MEP generates a natural PDF among the 
infinite PDF candidates that satisfy the same moment condi-
tions. The higher the order of moment is incorporated, the 
more convergent the PDF to the true is obtained. However, the 
finite number of moments gives only partial moment informa-
tion and therefore PDF estimation in MEP always involves 
some loss of information which is related to the truncated 
moments. Given the first four moments, it neglects the fifth 
and higher order moments. Knowing the upper bound of an 
estimated probability of failure with respect to the possible 
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variations of the truncated moment is important for applica-
tions.  

MEP is suitable in that it basically produces the continuous 
PDFs. Based on the MEP, we deal with the reliability bound 
problem in the optimization perspective. If the ranges of the 
truncated moments are readily determined, it is possible to 
find the maximum or minimum reliability with respect to the 
missing moments. On the one hand, there are too many trun-
cated moments (infinite) for an optimization formulation. One 
obvious choice is to study the influence of the first moment 
truncation to the probability of failure. Using the Hankel de-
terminant, the admissible range of the first truncated moment 
can be determined. Thus, an optimization formulation is de-
rived to set the bound of reliability considering the given mo-
ments information as well as the first moment truncated. It is 
found that the proposed formulation based on the MEP suc-
cessfully reduces the reliability bound whenever converged. 
The proposed method was applied to the numerical examples. 
 

2. Probability bounds based on given moments 

2.1 Mathematical theory of moment problem 

A moment problem is to find a PDF ( )f x  subject to 
 

( ) , 0,1,
b

k
k

a
x f x dx kµ = =∫  (1) 

 
where the k -th moment kµ  and the support a  and b  of 

( )f x  are given.  
The uniqueness and existence of the solution to the moment 

problem is determined by the Hankel matrices [16]. For the 
Hamburger problem in which the supports are unbounded 
( , )−∞ ∞ , the Hankel determinant is defined as: 
 

0

2

n

n

n n

H
µ µ

µ µ
= . (2) 

 
If 0nH >  in Eq. (2), infinite solutions exist. If 0nH = , 

the Hamburger problem has a unique solution with respect to 
the given moments 0 1 2( , ,..., )nµ µ µ . The Hamburger problem 
always requires (2 1)n +  number of moments including the 
0-th moment 0µ . Otherwise, the solution does not exist. 

The moment problem on a finite interval [0,1] is referred to 
as the Hausdorff problem. Since any finite support [ , ]a b  can 
be reduced to the normalized support [0,1] , the Hausdorff 
problem is appropriate for most engineering applications.  

When only a finite number of moments is available, it be-
comes a truncated(or reduced) Hausdorff moment problem as 
follows: 

Find a PDF ( )f x  with the given moment constraints, 
 

1

0
( ) , 0,1, ,k

k x f x dx k Nµ = =∫ . (3) 

Given a finite set of moments 0 1( , ,..., )Nµ µ µ , a necessary 
and sufficient condition for the existence of a solution to the 
truncated Hausdorff problem is  
 

0 and 0   for all 1,2,...,nnH H n N> > =  (4) 
 
where the Hankel determinants nH  and nH  are defined as 
follows:  
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Equating 1NH + =0 and 1NH + =0 gives the following rela-

tionships  [16]: 
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It is noted that 1Nµ +  is cancelled out in the right side of Eq. 

(7) such that 1Nµ+
+  and 1Nµ−

+  can be expressed by the given 
moments ( )0 1, ,...,N Nµ µ µ=µ . Eq. (7) is used for determin-
ing the admissible range(upper and lower bound) of the next 
moment. 
 
2.2 Moment based probability bounding technique 

For any discrete and continuous random variables, the fol-
lowing inequality due to Chebyshev holds [17]. For a random 
variable X  with mean Xµ  and standard deviation Xσ , it 
is given by, 

 

2
1Pr(| | )X XX k
k

µ σ− ≥ ≤  (8) 

Table 1. Classification of moment problem. 
 

Support [ , ]a b  Name 

( , )−∞ ∞  Hamburger problem 

[0, )∞  Stieltjes problem 

[0,1]  Hausdorff problem 
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where 0k >  is a real number. Since Chebyshev’s inequality 
is usually not very sharp, the use of this interval is limited. 

A moment-based inequality has been generalized by Ak-
hiezer [12]. Recently, Racz et al. [13] suggested a moment-
based distribution bounding method based on Akhiezer’s 
theorem. Let NΩ  be a set of probability distributions. It 
consists of all distributions which satisfy the same moment 
constraints: 

 

( ), 0,1,...,k
k x dF x k Nµ

∞

−∞
= =∫  (9) 

 
where ( )F x  is a CDF(cumulative distribution function). 
The upper and lower bound may be expressed as: 

 
U

( ) ( )
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L
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Using Akhiezer’s theorem, we can construct the bounds of 

probability of failure based on the reference distribution 
*( )F x  as follows [12, 13]: 
 

0 0 0 0
* *( ) ( ) ( ) ( )dF x dF x dF x dF x p
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and *( )F x  has the probability p  at 0 and *( ) NF x ∈Ω . 

The reference distribution *( )F x  is obtained when 
0nH = . This is the case when the distribution consists of n  

points. The corresponding points ( 1,..., )ix i n= are deter-
mined by the roots of the polynomial ( )nP x  as: 
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 (13) 

 
where 0 ( ) 1P x =  and nH  is the Hankel determinant as de-
fined in Eq. (2).  

The reference distribution associated with ix  is defined as: 
 

1 1

1 , , ( 1,2,..., 1)
n n

k
i k i i
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p p x p k nµ
= =

= + = = −∑ ∑ . (14) 

It can be expressed in a matrix form as:  
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When 0 1 2a, nd1µ µ µ=  are prescribed and 1 0H > , the 
bounds of probability at 0 are given by Racz et al. [13] as fol-
lows: 
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When 0 1 2 3 4, a, , n1 dµ µ µ µ µ=  are prescribed and 1 0H >  
and 2 0H > , the symbolic bounds are taken  [13].  
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There are no restrictions or assumptions(e.g. unimodal or 

continuous) on the PDFs in this method. It means that an ex-
treme PDF, for example a discrete PDF, can be used for con-
structing the reference distribution *( )F x . Consequently, it 
provides very conservative(loose) bounds although it is ma-
thematically rigorous. It is noted that the method based on 
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Akhiezer’s theorem requires an even number of mo-
ments(Hamburger problem). 
 

3. Proposed method for reliability bound 

3.1 Effect of higher moments truncation 

We assume that the first four moments are exactly given 
and higher moments are not available. Fig. 1 depicts that MEP 
recovers three PDFs 1 2 3, ,f f f  from the different fifth mo-
ments values. As shown in Fig. 1 and Table 2, 1 2 3, ,f f f  have 

different shapes as well as probabilities. Table 2 implies that 
the probability of failure can significantly change with respect 
to the truncated moment 5µ . Adding an arbitrarily chosen 
fifth moment into MEP may not provide a confident result. It 
is safer to examine the worst case in terms of reliability, that is, 
the maximum probability of failure pertaining to the possible 
variations of the first truncated moment 5µ . 

A parametric study with respect to 5µ  shows probability 
variations in Fig. 3. The problem of finding an upper bound 
can thus be formulated as an optimization to find the maxi-
mum probability of failure(minimum reliability) in connection 
with 5µ . MEP is fairly useful in that the sensitivity of the 
probability with respect to the moment is easily calculated. 
The next section will explain the MEP and the proposed for-
mulation. 

 
3.2 Maximum entropy principle (MEP) 

Out of all PDFs satisfying a set of moment constraints, 
MEP is to choose a PDF that maximizes the entropy measure 
as follows:  

 

maximize : ( ) ln ( )
b

a
f x f x dx−∫  (19) 

subject to : ( ) 1
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a
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Using the Lagrange multiplier, we have the Lagrangian, 
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Use of the Euler-Lagrange equation of the calculus of varia-

tions gives [18] 
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Fig. 1. Three different PDFs by MEP with the same four moments. 
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Fig. 2. Tail shapes of three PDFs. 
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Fig. 3. Parametric study of probability of failure with respect to the
variation of 5µ = [550,570]. 

Table 2. Moment and PDF comparison between three different PDFs.
 

 1f  2f  3f  

Given: 1st to 4th moment 0 1µ = , 1 2 3 4( , , , ) (3,10,36,138)µ µ µ µ =  
Probability of failure 

from the first four 
moments 

( ) 44
( )fp f x dx= ∫

31.3499 10−×  

5th moment 5µ = 550 5µ = 560 5µ = 570 
Probability of failure 

from the first five  
moments 

( ) 55
( )fp f x dx= ∫

41.4386 10−×  45.7779 10−×  182.3223 10−×
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where ( )Nf ⋅  denotes the maximum entropy PDF from N  
moments. When ( ) i

iw x x=  and i ir µ= , the solution is 
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Since the Lagrange multipliers cannot be obtained analyti-

cally except for simple cases, a potential function ( )Γ λ  has 
been introduced to determine the Lagrange multipliers [19], 
 

0
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λ λ µ
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.
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It can be solved by an iterative Newton’s algorithm. 
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Eq. (26) can be written in a matrix form, 
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It is noted that the given moments are normalized for a unit 

support [0,1] . The random variable X ( support: [ , ]a b ) is 
transformed to the normalized random variable Z  by: 
 

X aZ
b a

−=
− .

 (30) 

 
The relation between the moment of X  and Z  is given 

as follows: 
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where ,x iµ  and ,z iµ  are the i -th order moment of support 
[ , ]a b  and [0,1] , respectively.  

The derivative of the probability of failure with respect to 
the i -th order moment can be written using the chain rule, 

 

,

, , ,0 0 0

N N N
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The first derivative term f
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α = −
−
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The derivative of the k -th Lagrange multiplier with re-
spect to the j -th normalized moment is 
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3.3 Proposed optimization formulation 

The objective is to find the worst case(maximum probabil-
ity of failure) concerning 1Nµ + . Therefore, 1Nµ +  is taken as 
a design variable. The Hankel determinant is used to define 
the admissible range of 1Nµ + (Eq. (7)). Our proposed optimi-
zation formulation is stated as follows: 

 

( )*
1MEP

max. with respect tof NN
p µ +−

 (36) 

1 1 1subject to N N Nµ µ µ− +
+ + +≤ ≤  (37) 

 

where ( )
0*

1 1MEP
( ; )f N NN

p f x dx+ +− −∞
= ∫ µ .  

The moment vector 1N +µ  consists of the given moments 
0 1( , , , )Nµ µ µ  and an arbitrary value of 1Nµ +  within 

1 1[ , ]N Nµ µ− +
+ + . From Eqs. (33)-(35), the sensitivity information 

of 1( / )f Ndp dµ +  is available as soon as the MEP solution is 
obtained and used for optimization. 

 
3.4 Calculation of statistical moments 

A moment-based quadrature rule(MBQR) [20] is available 
to calculate the integration nodes and weights of the Gauss 
quadrature rule. It can be, however, numerically unstable 
when the number of integration nodes increases [9]. In this 
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paper, the nodes and weights of the Gauss quadrature rule are 
computed from the recursion coefficients relating the orthogo-
nal polynomial with respect to a specified PDF [21-23]. More 
details and numerical algorithms are referred to [21, 24]. 

 
3.5 Determination of admissible range of moment 

When the moments are assigned, the condition for existence 
of an MEP solution is discussed in [25]. It is identical to the 
condition that the corresponding truncated Hausdorff moment 
problem admits a solution, i.e., the Hankel determinants must 
be positive. Hence, using MEP, the boundary for the design 
variable can cover the whole domain of 1Nµ +  that is deter-
mined by Eq. (7). There are some guidelines for limiting the 
range of the moment. First, the Hankel determinant should be 
strictly positive. Second, moderate tolerances are needed at the 
bounds of 1Nµ + . Theoretically, the solutions of MEP are 
obtainable at the bounds of 1Nµ + , but numerical instability 
can occur at both bounds. Tolerances help us to avoid numeri-
cal instability.  

The possible region of kurtosis in the Pearson system is dif-
ferent from that of MEP. Its upper and lower bounds are given 
by [26],  
 

1
1 2

15 361
8

ββ β ++ < <  (38) 

 
where 1β  and 2β  is the skewness and kurtosis of limit state 
function, respectively. The lower bound of kurtosis of the 
Pearson system is the same as that of MEP, but its upper 
bound is much tighter than that of MEP because of the addi-
tional assumption in the Pearson system. 

 
3.6 Optimization procedure 

Fig. 4 depicts the overall optimization procedure. A pre-
liminary step is needed to obtain the current reliability from 
the given N  moments and then the procedure starts to 
bound reliability. The algorithm may be summarized thus: 

Step 1: Given moment information 1, , Nµ µ  and an ini-
tial value of the moment 1Nµ +  is approximated by 

1
1 ( )N

N Nx f x dxµ
∞

+
+

−∞
≅ ∫ . 

Step 2: Find probability distribution function 1( )Nf x+  
based on MEP. 

Step 3: Numerical integration is performed to estimate reli-
ability.  

Step 4: Calculate the sensitivity of fp with respect to 
1Nµ +  and update the new value.  

Step 5: An optimization is considered converged if the dif-
ference between the reliability values of two successive itera-
tions is less than a given tolerance. The tolerance for conver-
gence is taken 610− . 
 

4. Numerical example 

Our method is compared with the bound based on the Ak-
hiezer’s theorem. First, given N  moments 1 2( , ,... )Nµ µ µ , 
the probability of failure based on MEP is estimated. It is de-
noted as MEP- N . Using the proposed optimization formula-
tion, the upper bound of probability of failure in regard to 

1Nµ +  is evaluated based on the MEP. It is denoted as MEP-

 
 
Fig. 4. Flow chart of the optimization for reliability bounds. 

Table 3. Random variable parameters (example 1). 
 

 Distribution Mean Std. 

1X  Normal 5 0.5 

2X  Normal 5 0.4 
 

Table 4. The upper bound and probability of failure according to the 
given moments (example 1). 
 

 fp   U
fp   U

fp  

MCSa 0.055692 MCS ubb 0.056142   

MEP-2 0.066271 MEP-2* 0.071489 AK-2 0.3065 

MEP-3 0.056326 MEP-3* 0.061725 AK-3 · 

MEP-4 0.055146 MEP-4* 0.055286 AK-4 0.2109 

MEP-5 0.055245 MEP-5* Diverged AK-5 · 
a. 106 simulation, 95% CI = [0.000594, 0.000694] 
b. MCS upper bound(95% confidence) 
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Fig. 5. Upper bound of probability of failure with respect to the num-
ber of given moments. 



 Y. H. Sung and B. M. Kwak / Journal of Mechanical Science and Technology 24 (9) (2010) 1891~1900 1897 
 

  

N *. Following the Akhiezer’s theorem [12, 13], another up-
per bound is constructed depending on the given N  mo-
ments and denoted as AK-N. 

 
4.1 A simple mathematical problem 

The limit state function considered and input random vari-
ables are described in the following: 
 

2
1 2

80( ) 1 where Pr ( ) 0
8 5 fg p g

x x
= − = ≤⎡ ⎤⎣ ⎦+ +

x x
.
 (39) 

 
We can expect that this response is close to a normal distri-

bution, because 1 2( , )β β = (0.3364, 3.2263). The probability 
of failure MEP- N  and the upper bound MEP- *N  are esti-
mated for 2,3,4,5N =  in Table 4. 

Given more moment information, the MEP result ap-
proaches to the MCS probability of failure and the upper 
bound is also reduced as shown in Fig. 5. Particularly, the 
upper bound of probability of failure MEP-4*(=0.055286) is 
almost coincident with the probability of failure MEP-
4(=0.055146). The variation is about 41.4 10−×  and thus the 
first four moments are thought to be appropriate for a conver-
gent result. The probability of failure appears to be almost 
insensitive to 5µ . In the author’s experience, it is frequent 
when the limit state function is not highly nonlinear. 

It is shown that the upper bound MEP-4* provides a very 
tight value(=0.055286), reduced by about 96% compared to 
the upper bound AK-4(=0.2109). The maximum entropy solu-
tion can be numerically obtained with the first five moments, 
but a divergence problem occurs in obtaining the upper bound 
of the probability of failure with respect to the sixth moment 

6µ .  
This is because 6µ  is transformed to a small value due to 

the support normalization, and the Hessian matrix inversion of 
MEP in Eq. (29) becomes highly ill-conditioned. Tagliani 
[27] discussed the stability issue of MEP when the moments 

0( , )Nµ µ  are fixed and only 1Nµ +  varies. As N  is in-
creased, the condition number of Hessian matrix becomes 
significantly large and the solution of MEP is sensitive to the 
small variation of 1Nµ + . It hinders us from obtaining the solu-
tion of MEP at some specific values of 6µ .  
 
4.2 Long tail distribution 

We consider the long tail problem [28] as follows: 
 

2 3 4( ) 1 ( 6) ( 6) 0.6( 6)g y y y z= − − − − + − −x  (40) 
 
where Pr[ ( ) 0]fp g= ≤x  and 1 20.9063 0.4226 ,y x x= +  

1 20.4226 0.9063z x x= − . 
The statistical properties of the input random variables are 

given in Table 5. This example is known to have a long tail. 
Its skewness and kurtosis are given as 1 2( , )β β = (2.5036, 
13.6946). Since the kurtosis exceeds the upper bound in Eq. 
(38), the Pearson system is not applicable. 

Again, the accuracy of MEP is improved and the bounds 
also become tighter as the number of given moments is in-
creased as shown in Table 6. The upper bound has been suc-
cessfully calculated for each case, but it is not as tight as the 
first example. Moreover, Table 6 shows that MEP-6 
(=0.000857) does not have acceptable accuracy in comparison 
with the MCS result(=0.00064). It is found that the calculated 
probabilities change drastically as the number of moments 
increases. When the four moments are accommodated in MEP, 
the probability of failure MEP-4 is given as 0.028688 and the 
proposed upper bound is 0.033051. The probability change is 
about 34.4 10−× . The gap between MEP-4* and MEP-4 is 
relatively bigger than that of the first example. It indicates that 
the second example is more sensitive to the truncation of 5µ , 
that is, 5µ  is not ignorable in reliability estimation. Com-
pared to the upper bound of AK-4(=0.2058), MEP-4* suggests 
the upper bound as 0.033051, which is almost 84% reduced 
value. It demonstrates again that our method gives tighter 
bounds than those by existing bounding in the long tail distri-
bution. It is noticeable that the proposed method can give the 
upper bound either when N  is odd or even, but N  must be 
even in the existing method. 
 

Table 5. Random variable parameters (example 2). 
 

 Distribution Mean Std. 

1X  Normal 4.5580 0.3 

2X  Normal 1.9645 0.3 

 
Table 6. The upper bound and probability of failure according to the 
given moments (example 2). 
 

 fp   U
fp   U

fp  

MCSa 0.000644 MCS ubb 0.000694   

MEP-2 0.101854 MEP-2* 0.103987 AK-2 0.3823 

MEP-3 0.063569 MEP-3* 0.069752 AK-3 · 

MEP-4 0.028688 MEP-4* 0.033051 AK-4 0.2058 

MEP-5 0.004801 MEP-5* Diverged AK-5 · 

MEP-6 0.000858     
a. 106 simulation, 95% CI = [0.000594, 0.000694] 
b. MCS upper bound(95% confidence) 
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Fig. 6. Upper bound of probability of failure with respect to the num-
ber of given moments. 
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5. Conclusions 

In this paper, an optimization formulation is devised to find 
the upper bound of probability of failure with respect to the 
first truncated moment. Introducing MEP as a probability 
bounding tool, our method is shown to provide a tighter bound 
than the existing techniques. The first four moments are com-
monly used in the moment methods and they are mostly ade-
quate to obtain the accurate results. Example 1 is taken for 
considering such a case. Given the first four moments, the 
difference between the upper bound(MEP-4*) and the current 
probability of failure(MEP-4) is found to be very small. It 
means that there remains little possibility to cause a significant 
change of probability even if the fifth moment is added. In the 
long tail example, it is shown that the higher order moments 
are required for good result. The gap between the upper bound 
and the current probability of failure can be a good indication 
whether the adoption of the higher order moment is recom-
mended or not. A few observations from the study may be 
summarized with some discussions as follows: 

 
(1) Given moment 0 ,..., Nµ µ , the admissible range of 

1Nµ +  should be precisely determined. In this paper, the 
Hankel determinant is imposed to find the bounds of 1Nµ + . 
Since numerical errors are involved in the calculation, some 
tolerances are applied to moment bounds to avoid potential 
numerical instability especially around the boundary of the 
range. 

(2) To explore the upper bound depending on the moment 
truncation, we consider only the exponential function of a 
linear combination of polynomial basis. By narrowing down 
the scope, we could have obtained very tight bounds, which 
were unavailable up to now. 
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Appendix: Bounds of probability estimated by FORM 
and MCS 

A.1 FORM and its bounds 
FORM [1] is the most widely used method in reliability 

based design optimization, but its bounds have not been stud-
ied extensively. Shinozuka [11] has introduced the following 
result in the literature referring to an unpublished work of 
Hasofer. Under the assumption that random variables are 
Gaussian and the limit state function is a well-behaved con-
cave surface toward the origin, it can be shown that 
 

2 21 ( ) 1 ( )n fpχ β β− ≥ ≥ − Φ  (A.1) 

 
where 2( )nχ •   and ( )Φ •  are chi-square distribution function 
with n  degrees of freedom and standard normal cumulative 
density function(CDF), respectively.  

Fig. A.1 shows the upper and lower bound of probability of 
failure with respect to β  when the number of variables n  
is 2. The lower and upper bound have an order of difference 
between them. 

When β  is fixed, the lower bound 1 ( )β− Φ  is also fixed 
and the upper bound 2 21 ( )nχ β−  only depends on the num-
ber of random variables n  as shown in Fig. A.2.  

Eq. (A.1) is simple and easy to apply, but the decision of 
convexity or concaveness of the limit state function is compli-
cated. Furthermore, the bound is not narrow enough to have 
practical value. As shown in Fig. A.1 and Fig. A.2, this situa-
tion becomes worse when n  and β  are large. For example, 
when β =3 and n =20, the lower and the upper bound calcu-
lated by Eq. (A.1) is 31.35 10−× and 19.83 10−× , respectively. 
In this case, the upper bound is almost close to 1, which is not 
very meaningful. 
 
A.2 MCS and its bounds 

MCS [3] is very often used to check the accuracy of reli-
ability analysis as a reference value. Though MCS is generally 
regarded as the most accurate method, it has also variability 
owing to the limited sample size. With a sample size of 

MCSN , the failure probability by MCS is given with the 
(1 ) 100%α− ×  CI(confidence interval) as follows [3]: 

1 /2
MCS

_ MCS 1 /2
MCS

(1 )

Pr 1
(1 )

T T
f fT

f

T T
f fT

f f

p p
p z

N

p p
p p z

N

α

α

α
−

−

⎡ ⎤−⎢ ⎥− <
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−

< +⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.2) 

 
where _ MCSfp  and T

fp  denotes the MCS and the true 
probability of failure, respectively. The (1 )α− ×100th per-
centile of the distribution is denoted by zα  such that 

( ) 1zα αΦ = − . 
The following example is taken for illustration:  

1

2

( ) 1.5 1xg
x

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
x  (A.3) 

 
where 1 2Pr ( ) 0 and , ~ (5,0.5)fp g X X N= ≤⎡ ⎤⎣ ⎦x  

MCS is conducted for Eq. (A.3) with respect to different 
sample sizes of 

3 710 ~ 10 . The 95% CI and _ MCSfp  vary 
according to the number of samples MCSN  as shown in Fig. 
(A.3). When MCSN  is not sufficiently large, the MCS result 
is not good and the bounds are not close to each other. For 
example, when MCSN = 310 , the upper bound 34.77 10−×  is 
about 2.4 times that of _ MCSfp  (= 32.0 10−× ). In this case, 

_ MCSfp  may not be acceptable as a reference value. From Eq. 
(A.2), we can infer that the bounds cannot be tight when the 
MCS sampling number is small. In that case, the sampling 
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Fig. A.1. Probability of failure bounds of FORM according to reliabil-
ity index ( n =2). 
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Fig. A.2. Probability of failure bounds of FORM according to the 
number of random variables ( β =3). 
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number should properly be increased until the confidence 
interval is smaller than a desired tolerance. 

The lower and upper bounds of FORM given by Eq. (A.1) 
are added in Fig. (A.3). When the limit state function is con-
cave toward the origin and the input random variables are 
Gaussian, the estimated probability of failure by FORM be-
comes a lower bound. The upper bound, 22.17 10−× , given 
by Eq.(A.1), is much bigger than that by the 95% confidence 
interval of MCS. 
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